

Name:		

Module 1.1: Intricacies of a Volleyball Court

- 1. Suzie wants to know if there is an unused area at the park large enough for a volleyball court. She measured and the length was 50 feet with a width of 25 feet. The area of a normal indoor court is 1800 ft2. Is the area at the park large enough for a volleyball court?
 - a. Yes
 - b. No
- 2. Select all of the equations that could be used to calculate perimeter:
 - a. LxW
 - b. L+W+L+W
 - c. SxS
 - d. L+L+W+W
 - e. 2L + 2W

Module 2.1: Geometry of a Volleyball Net

1. Are these Parallel or Perpendicular lines in the net?

2. Are these Parallel or Perpendicular lines in the net?

3. True or False: The volleyball net runs perpendicular to the ground.

Name:		
Naiiie		

Module 3.1: Volleyball Properties

- 1. Select all of the following that could be used to make good observations:
 - a. Five Senses
 - b. Opinions
 - c. Measuring tools, such as a tape measure or scale
 - d. Vague
 - e. Detailed
- 2. Alyssa is making observations of properties on several balls to identify which sport they belong. Which of the following observations best fit volleyball?
 - a. Bumpy, medium weight of 623 g, orange, firm, large, sphere.
 - b. Smooth, lightweight of 280 g, white, parallel lines, firm yet compressed, large, sphere.
 - c. Smooth, lightweight of 125 g, white and red, stiching, firm, small enough to hold in one hand, sphere.
 - d. Bumpy, medium weight of 432g, brown, stichting, firm, medium size, prolate spheroid shape (a long circle with pointed ends).

Module 4.1: Calculating Total Force

- 1. When does gravity act on the volleyball?
 - a. When a player bumps the ball.
 - b. When a player misses a hit and the ball bounces off the ground.
 - c. When the ball is falling toward the ground.
 - d. When the ball is going up after a set.

Name:			

- 2. While Julie is serving the volleyball, which of the following is true about balanced and unbalanced forces (multiple answers)?
 - a. When she is holding the ball, the ball is experiencing balanced forces.
 - b. When she is holding the ball, the ball is experiencing unbalanced forces.
 - c. When she is hitting the ball, the ball is experiencing balanced forces.
 - d. When she is hitting the ball, the ball is experiencing unbalanced forces.

Module 5.1: Improving Serving

- 1. Brooklyn changes her foot placement and her toss during practice, tallying her serve for the next three practices. She improved her serve from 6/10 to 7/10. Did she perform a controlled experiment?
 - a. Yes, because she collected data before and after her change.
 - b. No, because she only collected data on herself.
 - c. Yes, because she collected data for three practices.
 - d. No, because she changed two things.
- 2. Put the following in order of how a volleyball player can assess his/her serve to ensure improvement:
 - a. Collecting Data
 - b. Asking a question about how they can improve their serve
 - c. Report out to a coach
 - d. Research
 - e. Changing one variable at a time
 - f. Making a hypothesis
 - g. Analyzing data

1	2	2	1	_	6	7	
Ι.	۷.	3.	4.	Э.	Ο.	/.	

N.I.			
Name:			
Naiiic			

- 3. When Jaime changed her foot placement while serving at practice, she improved her serves from 5/10 to 7/10. What conclusion can she draw from this evidence?
 - a. She's a better server.
 - b. Her change in foot placement improved her serve.
 - c. She had a better practice than normal.
 - d. She should use a torque serve to improve.

Module 6:1 Kinetic Energy and Speed

- 1. True or False: If a volleyball is hit with more energy, it will have more speed.
- 2. Bridgette served, bumped and set the ball. She measured and recorded the speed of each. A bump was hit at 10 mph, the set at 8 mph, and serve at 15 mph. Which of the following is a correct mathematical expression in order from fastest to slowest?
 - a. 15 mph < 10 mph > 8 mph
 - b. 15 mph > 10 mph > 8 mph
 - c. 15 mph > 10 mph < 8 mph
 - d. 15 mph < 10 mph < 8 mph

Module 7.1: Successful Serving

- 1. Lydia makes 6/10 serves and Lisa makes 13/20. Which mathematical expression is correct?
 - a. 6/10 > 13/20
 - b. 13/20 < 6/10
 - c. 6/10 < 13/20
 - d. 6/10 = 13/20
- 2. Lee serves 8/10 underhand serves and 6/10 torque serves. Which serve should he use in the game?
 - a. Underhand
 - b. Torque

Module 8.1: Adaptive Technology

- 1. Put the steps of the Engineering Design for Adaptive Volleyball in order:
 - a. Plan and build a prototype: Draw diagrams and build a device or implement a support.
 - b. Brainstorming and multiple designs for a solution.
 - c. Identify the problem: Some of the players in adaptive volleyball need assistance to retrieve balls that have gone out-of-play.
 - d. Redesign: Make changes to your design based on the data and interviews.
 - e. Test the prototype: Record data and interview participants on its success.
 - f. Communicate: Present your idea and results to the class.
 - g. Research: Learn more about adaptive sports and who plays.

1.	2.	3.	4.	5.	6.	7.
• •			• •			

Name: ______

Assessment Questions

2. List 2-3 challenges of adaptive sports.

3. List 2-3 benefits of adaptive sports.