\qquad Class: \qquad

Probability and Penalty Kicks

GRADES 6-8

Data Collection

	Shots Made	Total Kicks	Probability (calculated)
Partner 1: Right Foot			
Partner 2: Right Foot			
Partner 1: Left Foot			
Partner 2: Left Foot			

Based on your dominant foot probability	Predicted Outcome	Actual Outcome	Error (absolute value of actual subtracted from predicted)
12 Kicks			
15 Kicks			
100 Kicks			
1,000 Kicks			
2,000 Kicks			

\qquad Class: \qquad

Probability and Penalty Kicks

GRADES 6-8

Explain how probability can be a helpful tool to make predictions.
\qquad
\qquad
\qquad
\qquad
\qquad

Explain how probability can have limitations in predictions.

\qquad
\qquad

Properties and Behavior of Footballs GRADES 6-8

Formulas:

Volume of object 1:	Volume of object 2:
Volume of object 3:	Volume of object 4:

\qquad
\qquad

Properties and Behavior of Footballs
 GRADES 6-8

Claim: How does the density of a football affect its behavior? Use evidence to support your answer.
\qquad

Advancements in Shoe Technology

 GRADES 6-8| Shoe | Observations with numbers | Observations with words | Inference about why there was a design change |
| :---: | :---: | :---: | :---: |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

1. What would you consider the single greatest advancement in basketball shoe technology in the last 100 years? Please explain. \qquad
\qquad
\qquad
2. Hypothesize why basketball shoes have changed more in the last 45 years (1972 - present) than they did the previous 60+ years (1910 to 1972). \qquad
\qquad
\qquad
\qquad
\qquad

Advancements in Shoe Technology GRADES 6-8

3. Do you think high-top shoes reduce ankle injuries compared to low-top shoes? Please explain.
\qquad
\qquad
\qquad
4. For many athletes, Converse Chuck Taylor sneakers lasted an entire season, if not more. Now most players change their shoes every week, if not every day. Please explain. \qquad
\qquad
\qquad

Brainstorm three designs that improve shoe technology to increase performance and decrease injury.

Select your best design: Use your observations and inferences from the shoe advancement data table to justify why your design will increase performance and decrease injury.
\qquad
\qquad

Adaptive Technology

GRADES 6-8

Create a device that will help adaptive players retrieve the ball after a play. Brainstorm ways to help adaptive players.

\square	

Module
5.1

Name: \qquad
\qquad

Adaptive Technology

GRADES 6-8

Select a Design (draw in detail, label materials and provide measurements)
\square
Prototype testing plan:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Class: \qquad

Heart Rate and Calories

GRADES 6-8

	Partner 1	Partner 2
Resting heart rate (measured)		
Heart rate after 2.5 minutes of play		
Heart rate after		
5 minutes of play		
Maximum heart rate (calculated)		

Using the equation $\mathrm{C}=\left(\mathrm{MET}^{*} \text { weight }\right)^{*} \mathrm{t}$, complete the data table and graph.

Time of Activity (hours) t	@ Resting Heart Rate (MET 1.5)	@ Heart Rate for Playing Soccer (MET 8.5)
0		
1		
2		
3		
4		
5		
6		

\qquad

Heart Rate and Calories

GRADES 6-8

Using the graph:

1. How many calories did you burn when you played soccer for 5 minutes?
2. If you played soccer for 45 minutes, how many calories would you burn?
3. If you played soccer for 90 minues, how many calories would you burn?
\qquad
\qquad
\qquad
4. How did your calculations compare to those provided by the heart rate monitor?
\qquad
\qquad
5. How does the MET value change the slope of the line?
\qquad
\qquad
\qquad

The Evolution of the Football Helmet

GRADES 6-8
No Helmet
\qquad

The Evolution of the Football Helmet

GRADES 6-8

Helmet	Observations		Advantages	Limitations
No				
Helmet				

\qquad
\qquad

Shot Tracking with Technology
 GRADES 6-8

Probabilities of Success

	Self	Partner 1	Partner 2	Partner 3
FT				
2PT				
3PT				

Calculate your frequency of success for the following:

1. If you attempted 27 - 3PT shots: \qquad
2. If you attempted 93 - 2PT shots: \qquad
3. If you attempted 21 - FT shots: \qquad

Based on the graph you constructed with your class data, and your frequency and probability above, make a claim that expresses who would be the highest paid player on your class'team. Support your claim with evidence and reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shot Tracking (Non-Technology Option)

GRADES 6-8

O - Shots Made

X - Shots Missed

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	TOTAL Made
Free Throws																

Write a mathematical expression that states if your free throw accuracy is greater than or less than your layup accuracy. Justify it with evidence.

