\qquad
\qquad

What's your Angle?

GRADES 6-8

Explore

$\left.$| Rear
 Triangle | 24" STEM
 Bike (cm) | Front
 Triangle | 24" STEM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bike (cm) | | | |\quad| Rear |
| :---: |
| Triangle | | Angle |
| :---: |
| Measure |
| (Degrees) |\quad| Front |
| :---: |
| Triangle | | Angle |
| :---: |
| Measure |
| (Degrees) | \right\rvert\,

Explain

	Triangle Inequality Theorem	Triangle Sum Theory
Rear Triangle	answer here	answer here
Front Triangle	answer here	answer here

Elaborate

What do you expect the angle measures and bike measures to be on the 26 " bike? Provide specific predictions.
answer here

Class: \qquad

What's your Angle?

GRADES 6-8

Evaluate

Rear Triangle	$26^{\prime \prime}$ STEM Bike (cm)	Front Triangle	26" STEM Bike (cm)	Rear Triangle	Angle Measure (Degrees)	Front Triangle	Angle Measure (Degrees)
Tire to Pedal	answer here	Seat to Handlebar	answer here	Tire	answer here	Tire	answer here
Seat to Pedal	answer here	Seat to Pedal	answer here	Pedal	answer here	Pedal	answer here
Tire to Seat	answer here	Pedal to Handlebar	answer here	Seat	answer here	Seat	answer here

Explain

	Triangle Inequality Theorem	Triangle Sum Theory
Rear Triangle	answer here	answer here
Front Triangle	answer here	answer here

Are the measurements from the $24^{\prime \prime}$ and 26 " bike proportional?
Justify your response with an example.
answer here

Extend

24" Bike Frame	26" Bike Frame
answer here	answer here

