\qquad
\qquad

Energy of the Ride
 GRADES 6-8

Explore

What percent of the Denise Mueller-Korenek ($183 \mathrm{MPH} / 82$ meters/second) was your fastest ride? Example: If you rode at $10 \mathrm{M} / \mathrm{S} / 82 \mathrm{M} / \mathrm{S}=.12$ or 12%. Your fastest ride was only 12% as fast as Denise Mueller-Korenck's ride.

Elaborate

Ride: 30 meters			
Mass of the bike: 14 kg	Time (seconds)	Velocity (meters/second)	Kinetic Energy (Joules)
Student 1	answer here	answer here	answer here
Student 2	answer here	answer here	answer here
Student 3	answer here	answer here	answer here
Student 4	answer here	answer here	answer here

Graph the kinetic energy vs. your velocity for each ride from slowest to fastest

Velocity
\qquad
\qquad

Energy of the Ride

GRADES 6-8

Evaluate

Based on your data/graph, explain the relationship between velocity and kinetic energy by making a claim about the relationship. Support your claim with evidence and reasoning.

Claim: What is the relationship between velocity and kinetic energy?
answer here

Evidence: Record and reference in words any data that supports your claim.
answer here

Reasoning: Explain why your claim is supported by evidence and scientific ideas. Use the kinetic energy formula to support you.
answer here

