Properties and Behavior of Footballs

GRADES 6-8

Formulas:

$$V = rac{b \cdot h \cdot l}{2}$$

$$V=\pi r^2 h$$

$$V = \frac{4}{3}\pi r^3$$

$$V=rac{\pi r^2 h}{3}$$

$$V = l \cdot w \cdot h$$

$$V = \frac{l \cdot w \cdot h}{2}$$

Volume of object 2:

Volume of object 3:

Volume of object 1:

Volume of object 4:

Name:	Class:

Properties and Behavior of Footballs

GRADES 6-8

	Volume of the center cylinder	Volume of the end cone	Approximate volume of the football	Mass of the football	Density of the football D=M/V
Youth Football	+	() x2	=		
Foam Football	+	() x2	=		

Claim: How does the density of a football affect its behavior? Use evidence to support your answer.